US009256535B2

a2z United States Patent (10) Patent No.: US 9,256,535 B2
Reinhardt et al. 45) Date of Patent: Feb. 9, 2016
(54) CONDITIONAL NOTIFICATION USPC ottt 711/156
MECHANISM See application file for complete search history.
(71) Applicant: Advanced Micro Devices, Inc., (56) References Cited
Sunnyvale, CA (US)
U.S. PATENT DOCUMENTS
(72) Inventors: Steven K. Reinhardt, Vancouver, WA
(US); Mare S. Orr, Renton, WA (US); 5,724,501 A : 3/1998 Haraetal.cccooovns 713/322
Bradford M. Beckman, Remond, WA D731 Ble 82010 Walton v 713821
OTHER PUBLICATIONS
(73) Assignee: ADVANCED MICRO DEVICES,
INC., Sunnyvale, CA (US) H. Wong et al., “Pangaea: A Tightly-Coupled IA32 Heterogeneous
Chip Multiprocessor,” Proceedings of Parallel Architectures and
(*) Notice: Subject to any disclaimer, the term of this Compilation Techniques (PACT) 2008.
patent is extended or adjusted under 35
U.S.C. 154(b) by 250 days. * cited by examiner
(21) Appl. No.: 13/856,728 Primary Examiner — Mark Giardino, Jr.
(22) Filed: Apr. 4,2013](;ggvérzzﬁgéey, Agent, or Firm — Park, Vaughan, Fleming &
(65) Prior Publication Data (57) ABSTRACT
US 2014/0304474 Al Oct. 9, 2014 The described embodiments comprise a computing device
with a first processor core and a second processor core. In
(1) Int. Cl. some embodiments, during operations, the first processor
GO6F 12/00 (2006.01) core receives, from the second processor core, an indication
Go6l’ 12/08 (2006.01) of'a memory location and a flag. The first processor core then
GOGF 13/00 (2006.01) stores the flag in a first cache line in a cache in the first
GOGF 13/28 (2006.01) processor core and stores the indication of the memory loca-
GOGF 1/32 (2006.01) tion separately in a second cache line in the cache. Upon
(52) US.CL encountering a predetermined result when evaluating a con-
CPC ... GO6F 12/0811 (2013.01); GO6F 12/0875 dition for the indicated memory location, the first processor
(2013.01); GO6F" 1/3206 (2013.01); GOGF core updates the flag in the first cache line. Based on the
12/0817 (2013.01); Y02B 60/1225 (2013.01) update of the flag, the first processor core causes the second
(58) Field of Classification Search processor core to perform an operation.

CPC GOGF 1/3206; GOGF 12/0811; GOGF
12/0875; GOGF 12/0817; Y02B 60/1225

RECEIVE AN INDICATION THAT A FLAG
IS TO BE MONITORED

!

STORE THE FLAG IN A FIRST CACHE
LINE AND SEPARATELY STORE AN
INDICATION OF A MEMORY LOCATION
AND A THRESHOLD IN A SECOND
CACHE LINE
402

!

‘ COMMENCE MONITORING THE FLAG I
404

!

KEEP TRACK OF A VALUE IN THE

!

UPON DETECTING THAT A VALUE IN
THE INDICATED MEMORY LOCATION
HAS CHANGED, EVALUATE A
CONDITION FOR THE MEMORY

408

IS THE
CONDITION MET?
410

INDICATED MEMORY LOCATION j—
406

19 Claims, 3 Drawing Sheets

[

UPDATE THE FLAG IN THE FIRST
CACHE LINE

v

DETECT THE UPDATE OF THE FLAG IN
THE FIRST CACHE LINE

!

SEND A SIGNAL TO THE SECOND
PROCESSOR CORE TO CAUSE THE
SECOND PROCESSOR CORE TO
PERFORM AN OPERATION

U.S. Patent Feb. 9, 2016 Sheet 1 of 3 US 9,256,535 B2

MAIN MEMORY
106
DIRECTORY
132
\ 2 4 \ A 4
CACHE CACHE
L2 CACHE CTRLR CTRLR L2 CACHE
124 128 130 126
r* v T T v *+
L1116 L1118 L1120 L1122
CORE CORE CORE CORE
108 110 112 114
PROCESSOR 102 PROCESSOR 104
COMPUTING DEVICE 100
MONITORING
MEMORY CIRCUITS | MECHANISM
200 202

CACHE 204

FIG. 2

U.S. Patent Feb. 9, 2016 Sheet 2 of 3 US 9,256,535 B2

Global Declarations:

struct trigger

{
uint wakeup flag;
char padding[CACHE LINE SIZE - sizeof (uint)];
uint *memory location ptr;
uint threshold value;

}

veid mwaitc{trigger t)

{
monitor {&t.wakeup flag):
mwait ()

}

In the second processor core:

trigger trig;
int threshold = MIN_SCHED_GRAN;

// perform preceding operations

trig.memory location ptr = tail ptr:

trig.threshold _value = threshold:
trig.wakeup flag = 0;

mwalitc (trig):

// perform subsequent operations
In the first processor core:

// perform preceding operations

// make an adjustment to the task gusue tail pointer via the
// trig.memory location pointer

uint new val = *(trig.memory location ptr} + update value;
uint cur val = *(trig.memory location ptrj:
uint old val = CAS(trig.memory location ptr, cur _val, new val);

// determine if the amount of data in the task queue is sufficient to wake
// up the first processor core (and that the CAS completed as expscted)

if(cld_val == cur_val)

if(new val >= trig.threshold value) { trig.wakeup flag = 1; }

// perform subsegquent operations

FIG. 3

U.S. Patent Feb. 9, 2016 Sheet 3 of 3 US 9,256,535 B2

(START ’

A 4
RECEIVE AN INDICATION THAT A FLAG

y

UPDATE THE FLAG IN THE FIRST
IS TO BE MONITORED CACHE LINE
400 412

I

STORE THE FLAG IN A FIRST CACHE
LINE AND SEPARATELY STORE AN
INDICATION OF A MEMORY LOCATION

Y

DETECT THE UPDATE OF THE FLAG IN
THE FIRST CACHE LINE

414
AND A THRESHOLD IN A SECOND
CACHE LINE
402 A 4
SEND A SIGNAL TO THE SECOND
l PROCESSOR CORE TO CAUSE THE
SECOND PROCESSOR CORE TO
COMMENCE MONITORING THE FLAG PERFORM AN OPERATION
404 416
Y \ 4
KEEP TRACK OF A VALUE IN THE END
INDICATED MEMORY LOCATION
406

y

UPON DETECTING THAT A VALUE IN
THE INDICATED MEMORY LOCATION
HAS CHANGED, EVALUATE A
CONDITION FOR THE MEMORY
LOCATION
408

IS THE
CONDITION MET?
410

NO

FIG. 4

US 9,256,535 B2

1
CONDITIONAL NOTIFICATION
MECHANISM

RELATED APPLICATION

The instant application is related to U.S. patent application
Ser. No. 13/782,063, which is titled “Conditional Notification
Mechanism,” by inventors Steven K. Reinhardt, Marc S. Orr,
and Bradford M. Beckmann, which was filed 1 Mar. 2013.
The instant application is related to U.S. patent application
Ser.No. 13/782,117, which s titled “Conditional Notification
Mechanism,” by inventors Steven K. Reinhardt, Marc S. Orr,
and Bradford M. Beckmann, which was filed 1 Mar. 2013.

BACKGROUND

1. Field

The described embodiments relate to computing devices.
More specifically, the described embodiments relate to a con-
ditional notification mechanism in a computing device.

2. Related Art

Many modern computing devices include two or more
entities such as central processing unit (CPU) or graphics
processing unit (GPU) cores, hardware thread contexts, etc.
In some cases, two or more entities in a computing device
communicate with one another to determine if a given event
has occurred. For example, a first CPU core may reach a
synchronization point at which the first CPU core communi-
cates with a second CPU core to determine if the second CPU
core has reached a corresponding synchronization point. Sev-
eral techniques have been proposed to enable entities in a
computing device to communicate with one another to deter-
mine if a given event has occurred, as described below.

A first technique for communicating between entities is a
“polling” technique for which a first entity, until a value in a
shared memory location meets a condition, reads the shared
memory location and determines if the shared memory loca-
tion meets the condition. For this technique, a second (and
perhaps third, fourth, etc.) entity updates the shared memory
location when a designated event has occurred (e.g., when the
second entity has reached a synchronization point). This tech-
nique is inefficient in terms of power consumption because
the first entity is obligated to fetch and execute instructions
for performing the reading and determining operations. Addi-
tionally, this technique is inefficient in terms of cache traffic
because the reading of the shared memory location can
require invalidation of a cached copy of the shared memory
location. Moreover, this technique is inefficient because the
polling entity is using computational resources that could be
used for performing other computational operations.

A second technique for communicating between entities is
an interrupt scheme, in which an interrupt is triggered by a
first entity in order to communicate with a second (and per-
haps third, fourth, etc.) entity. This technique is inefficient
because processing interrupts in the computing device
requires numerous operations be performed. For example, in
some computing devices, it is necessary to flush instructions
from one or more pipelines and save state before an interrupt
handler can process the interrupt. In addition, in some com-
puting devices, processing an interrupt requires communicat-
ing the interrupt to an operating system on the computing
device for prioritization and may require invoking scheduling
mechanisms (e.g., a thread scheduler, etc.).

A third technique for communicating between entities is
the use of instructions such as the MONITOR and MWAIT
instructions. For this technique, upon executinga MONITOR
instruction, the first entity configures a cache coherency

10

15

20

25

30

35

40

45

50

55

60

65

2

mechanism in the computing device to monitor for updates to
a designated memory location. Upon subsequently executing
the MWAIT instruction, the first entity signals the coherency
mechanism (and the computing device generally) that it is
transitioning to a wait (idle) state until an update (e.g., a write)
is made to the memory location. When a second entity
updates the memory location by writing to the memory loca-
tion, the coherency mechanism recognizes that the update has
occurred and forwards a wake-up signal to the first entity,
causing the first entity to exit the idle state. This technique is
useful for simple cases where a single update is made to the
memory location. However, when a value in the memory
location is to meet a condition, the technique is inefficient.
For example, assuming that the condition is that the memory
location, which starts at a value of 0, is to be greater than 25,
and that the second entity increases the value in the memory
location by at least one each time an event occurs. In this case,
the first entity may be obligated to execute the MONITOR/
MWAIT instructions and conditional checking instructions as
many as 26 times before the value in the memory location
meets the condition.

A fourth technique for communicating between entities
employs a user-level interrupt mechanism where a first entity
specifies the address of a memory location (“flag™). When a
second entity subsequently updates/sets the flag, the first
entity is signaled to execute an interrupt handler. For this
technique, much of the control for handling the communica-
tion between the entities is passed to software and thus to the
programmer. Because software is used for handling the com-
munication between the entities, this technique is inefficient
and error-prone.

As described above, the various techniques that have been
proposed to enable entities to communicate with one another
to determine if a given event has occurred are inefficient in
one way or another.

SUMMARY

The described embodiments comprise a computing device
with a first processor core and a second processor core. In
some embodiments, during operations, the first processor
core receives, from the second processor core, an indication
of'a memory location (e.g., a pointer to the memory location,
an address of the memory location, etc.) and a flag. The first
processor core then stores the flag in a first cache line in a
cache in the first processor core and stores the indication of
the memory location separately in a second cache line in the
cache. Upon encountering a predetermined result when
evaluating a condition for the indicated memory location, the
first processor core updates the flag in the first cache line.
Based on the update of the flag, the first processor core causes
the second processor core to perform an operation.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 presents a block diagram illustrating a computing
device in accordance with some embodiments.

FIG. 2 presents a block diagram illustrating a cache in
accordance with some embodiments.

FIG. 3 presents pseudocode illustrating a series of opera-
tions performed by a first processor core and a second pro-
cessor core for monitoring data in a task queue in accordance
with some embodiments.

FIG. 4 presents a flowchart illustrating a process for using
a flag in memory to enable a first processor core to signal a
second processor core when a condition is met in accordance
with some embodiments.

US 9,256,535 B2

3

Throughout the figures and the description, like reference
numerals refer to the same figure elements.

DETAILED DESCRIPTION

The following description is presented to enable any per-
son skilled in the art to make and use the described embodi-
ments, and is provided in the context of a particular applica-
tion and its requirements. Various modifications to the
described embodiments will be readily apparent to those
skilled in the art, and the general principles defined herein
may be applied to other embodiments and applications with-
out departing from the spirit and scope of the described
embodiments. Thus, the described embodiments are not lim-
ited to the embodiments shown, but are to be accorded the
widest scope consistent with the principles and features dis-
closed herein.

In some embodiments, a computing device (e.g., comput-
ing device 100 in FIG. 1) uses code and/or data stored on a
computer-readable storage medium to perform some or all of
the operations herein described. More specifically, the com-
puting device reads the code and/or data from the computer-
readable storage medium and executes the code and/or uses
the data when performing the described operations.

A computer-readable storage medium can be any device or
medium or combination thereof that stores code and/or data
for use by a computing device. For example, the computer-
readable storage medium can include, but is not limited to,
volatile memory and/or non-volatile memory, including flash
memory, random access memory (eDRAM, RAM, SRAM,
DRAM, DDR, DDR2/DDR3/DDR4 SDRAM, etc.), read-
only memory (ROM), and/or magnetic or optical storage
mediums (e.g., disk drives, magnetic tape, CDs, DVDs). In
the described embodiments, the computer-readable storage
medium does not include non-statutory computer-readable
storage mediums such as transitory signals.

In some embodiments, one or more hardware modules are
configured to perform the operations herein described. For
example, the hardware modules can comprise, but are not
limited to, one or more processors/processor cores/central
processing units (CPUs), application-specific integrated cir-
cuit (ASIC) chips, field-programmable gate arrays (FPGAs),
caches/cache controllers, embedded processors, graphics
processors (GPUs)/graphics processor cores, pipelines, and/
or other programmable-logic devices. When such hardware
modules are activated, the hardware modules perform some
or all of the operations. In some embodiments, the hardware
modules include one or more general-purpose circuits that are
configured by executing instructions (program code, firm-
ware/microcode, etc.) to perform the operations.

In some embodiments, a data structure representative of
some or all of the structures and mechanisms described herein
(e.g., some or all of computing device 100) is stored on a
computer-readable storage medium that includes a database
or other data structure which can be read by a computing
device and used, directly or indirectly, to fabricate hardware
comprising the structures and mechanisms. For example, the
data structure may be a behavioral-level description or regis-
ter-transfer level (RTL) description of the hardware function-
ality in a high level design language (HDL) such as Verilog or
VHDL. The description may be read by a synthesis tool which
may synthesize the description to produce a netlist compris-
ing alist of gates/circuit elements from a synthesis library that
represent the functionality of the hardware comprising the
above-described structures and mechanisms. The netlist may
then be placed and routed to produce a data set describing
geometric shapes to be applied to masks. The masks may then

20

30

40

45

50

55

4

beused in various semiconductor fabrication steps to produce
a semiconductor circuit or circuits corresponding to the
above-described structures and mechanisms. Alternatively,
the database on the computer accessible storage medium may
be the netlist (with or without the synthesis library) or the data
set, as desired, or Graphic Data System (GDS) II data.

In the following description, functional blocks may be
referred to in describing some embodiments. Generally, func-
tional blocks include one or more interrelated circuits that
perform the described operations. In some embodiments, the
circuits in a functional block include circuits that execute
program code (e.g., machine code, firmware, etc.) to perform
the described operations.

OVERVIEW

The described embodiments include mechanisms to enable
a first processor core (or a directory, a cache, a monitoring
mechanism, etc.) in a computing device to receive, from a
second processor core, an indication that a memory location
is to be monitored. Upon receiving the indication, the first
processor core monitors the memory location to determine
when the memory location is updated (e.g., when a value in
the memory location is changed). When the memory location
is updated, the first processor core sends a signal to the second
processor core. Upon receiving the signal, the second proces-
sor core performs a corresponding action.

In some embodiments, to enable the monitoring, the first
processor core receives, from the second processor core, an
indication of a memory location (e.g., a pointer, an address,
etc.), a threshold value, and a flag. In these embodiments, the
flag is stored in the monitored memory location. The first
processor core updates the flag (e.g., sets the flag to a new
value) when a value in the indicated memory location has a
predetermined relationship (e.g., greater than or equal to, etc.)
to the threshold value. In other words, the first processor core
keeps track of the value in the indicated memory location and
updates the flag when the value in the memory location has
the predetermined relationship to the threshold value.

In some embodiments, upon receiving the indication of the
memory location, the threshold value, and the flag, the first
processor core stores the flag in a first cache line in a cache in
the first processor core, and separately stores the indication of
the memory location and the threshold value in a second
cache line. In this way, the first processor core enables cache-
line-level monitoring for updates to the flag without errone-
ously detecting updates to the indicated memory location as
updates to the flag (as is described in more detail below). In
some embodiments, the second processor core generates a
data structure (or “struct”) that includes padding data that
causes the first processor core to store the flag in the first
cache line and separately store the indication of the memory
location and the threshold value in the second cache line.

The described embodiments enable the second processor
core to cause the first processor core to signal the second
processor core to perform an action when a condition is met
for an indicated memory location. In this way, the second
processor core can have the indicated memory location moni-
tored without itself performing all of the monitoring opera-
tions, which can enable more efficient operation of a comput-
ing device in which the processor cores are located.
Computing Device

FIG. 1 presents a block diagram illustrating a computing
device 100 in accordance with some embodiments. As can be
seen in FIG. 1, computing device 100 includes processors
102-104 and main memory 106. Processors 102-104 are gen-
erally devices that perform computational operations in com-

US 9,256,535 B2

5

puting device 100. Processors 102-104 include four processor
cores 108-114, each of which includes a computational
mechanism such as a central processing unit (CPU), a graph-
ics processing unit (GPU), and/or an embedded processor.

Processors 102-104 also include cache memories (or
“caches”) that can be used for storing instructions and data
that are used by processor cores 108-114 for performing
computational operations. The caches in processors 102-104
include a level-one (L1) cache 116-122 (e.g., “L.1 116™) in
each processor core 108-114 that is used for storing instruc-
tions and data for use by the corresponding processor core.
Generally, I.1 caches 116-122 are the smallest of a set of
caches in computing device 100 and are located closest to the
circuits (e.g., execution units, instruction fetch units, etc.) in
the respective processor cores 108-114. The closeness of the
L1 caches 116-122 to the corresponding circuits enables the
fastest access to the instructions and data stored in the L1
caches 116-122 from among the caches in computing device
100.

Processors 102-104 also include level-two (L.2) caches
124-126 that are shared by processor cores 108-110 and 112-
114, respectively, and hence are used for storing instructions
and data for all of the sharing processor cores. Generally, [.2
caches 124-126 are larger than L1 caches 116-122 and are
located outside, but close to, processor cores 108-114 on the
same semiconductor die as processor cores 108-114. Because
L2 caches 124-126 are located outside the corresponding
processor cores 108-114, but on the same die, access to the
instructions and data stored in L2 cache 124-126 is slower
than accesses to the L1 caches.

Each of the L1 caches 116-122 and L2 caches 124-126,
(collectively, “the caches™) include memory circuits that are
used for storing cached data and instructions. For example,
the caches can include one or more of static random access
memory (SRAM), embedded dynamic random access
memory (eDRAM), DRAM, double data rate synchronous
DRAM (DDR SDRAM), and/or other types of memory cir-
cuits.

Main memory 106 comprises memory circuits that form a
“main memory” of computing device 100. Main memory 106
is used for storing instructions and data for use by the proces-
sor cores 108-114 on processor 102-104. In some embodi-
ments, main memory 106 is larger than the caches in com-
puting device 100 and is fabricated from memory circuits
such as one or more of DRAM, SRAM, DDR SDRAM,
and/or other types of memory circuits.

Taken together, L1 caches 116-122, 1.2 caches 124-126,
and main memory 106 form a “memory hierarchy” for com-
puting device 100. Each of the caches and main memory 106
are regarded as levels of the memory hierarchy, with the lower
levels including the larger caches and main memory 106.
Within computing device 100, memory requests are prefer-
entially handled in the level of the memory hierarchy that
results in the fastest and/or most efficient operation of com-
puting device 100.

In addition to processors 102-104 and memory 106, com-
puting device 100 includes directory 132. In some embodi-
ments, processor cores 108-114 may operate on the same data
(e.g., may load and locally modify data from the same loca-
tions in memory 106). Computing device 100 generally uses
directory 132 (or another mechanism such as cache
controller(s), etc.) to avoid different caches (and memory
106) holding copies of data in different states—to keep data in
computing device 100 “coherent.” Directory 132 is a func-
tional block that includes mechanisms for keeping track of
cache blocks/data that are held in the caches, along with the
coherency state in which the cache blocks are held in the

30

40

45

55

6

caches (e.g., using the MOESI coherency states modified,
owned, exclusive, shared, invalid, and/or other coherency
states). In some embodiments, as cache blocks are loaded
from main memory 106 into one of the caches in computing
device 100 and/or as a coherency state of the cache block is
changed in a given cache, directory 132 updates a correspond-
ing record to indicate that the data is held by the holding
cache, the coherency state in which the cache block is held by
the cache, and/or possibly other information about the cache
block (e.g., number of sharers, timestamps, etc.). When a
processor core or cache subsequently wishes to retrieve data
or change the coherency state of a cache block held in a cache,
the processor core or cache checks with directory 132 to
determine if the data should be loaded from main memory
106 or another cache and/or if the coherency state of a cache
block can be changed.

As canbeseen in FIG. 1, processors 102-104 include cache
controllers 128-130 (“cache ctrlr”), respectively. Each cache
controller 128-130 is a functional block with mechanisms for
handling accesses to main memory 106 and communications
with directory 132 from the corresponding processor 102-
104.

Although an embodiment is described with a particular
arrangement of processors and processor cores, some
embodiments include a different number and/or arrangement
of processors and/or processor cores. For example, some
embodiments have two, six, eight, or another number of pro-
cessor cores—with the cache hierarchy adjusted accordingly.
Generally, the described embodiments can use any arrange-
ment of processors and/or processor cores that can perform
the operations herein described.

Additionally, although an embodiment is described with a
particular arrangement of caches and directory 132, some
embodiments include a different number and/or arrangement
of caches and/or do not include directory 132. For example,
the caches (e.g., L1 caches 116-122, etc.) can be divided into
separate instruction and data caches. Additionally, .2 cache
124 may not be shared in the same way as shown, and hence
may only be used by a single processor core, two processor
cores, etc. (and hence there may be multiple 1.2 caches 124 in
each processor 102-104). As another example, some embodi-
ments include different levels of caches, from only one level
of cache to multiple levels of caches, and these caches can be
located in processors 102-104 and/or external to processor
102-104. For example, some embodiments include one or
more [.3 caches (not shown) in the processors or outside the
processors that is used for storing data and instructions for the
processors. Generally, the described embodiments can use
any arrangement of caches that can perform the operations
herein described.

Moreover, although computing device 100 and processors
102-104 are simplified for illustrative purposes, in some
embodiments, computing device 100 and/or processors 102-
104 include additional mechanisms for performing the opera-
tions herein described and other operations. For example,
computing device 100 and/or processors 102-104 can include
power controllers, mass-storage devices such as disk drives or
large semiconductor memories (as part of the memory hier-
archy), batteries, media processors, input-output mecha-
nisms, communication mechanisms, networking mecha-
nisms, display mechanisms, etc.

Cache

FIG. 2 presents a block diagram illustrating a cache 204 in
accordance with some embodiments. In some embodiments,
some or all of the caches in computing device 100 (e.g., L.1
116, [.2 124, etc.) may comprise, but are not required to
comprise, internal structures similar to those shown in FIG. 2.

US 9,256,535 B2

7

As can be seen in FIG. 2, cache 204 comprises memory
circuits 200 and monitoring mechanism 202. Memory cir-
cuits 200, which comprise one or more of static random
access memory (SRAM), embedded dynamic random access
memory (eDRAM), DRAM, double data rate synchronous
DRAM (DDR SDRAM), and/or other types of memory cir-
cuits, are used for storing cached data and instructions in
cache 204.

Monitoring mechanism 202 is a functional block that is
configured for performing operations for monitoring cache
blocks (e.g., cache lines or other portions of memory circuits
200) as part of an operation of monitoring a memory location.
In some embodiments, upon receiving an identifier of a
memory location that is to be monitored from an associated
processor core, monitoring mechanism 202 stores the identi-
fier for the memory location in a watch table (or other
memory element). When a cache line in memory circuits 200
is subsequently changed (e.g., when a value in a cache line is
changed), monitoring mechanism 202 determines if the cache
line is listed in the watch table. If so, monitoring mechanism
202 signals the associated processor core that a watched
memory location (the copy of the memory location stored in
a cache block in memory circuits 200) has changed. The
associated processor core may then perform subsequent
operations based on the change in the memory location.

Although cache 204 is shown with particular mechanisms,
in some embodiments, cache 204 includes different and/or
additional mechanisms. Generally, cache 204 includes suffi-
cient mechanisms to perform the operations herein described.
Lower-Power and Higher-Power Operating Modes

As described herein, in some embodiments, some or all of
aprocessor core may transition from a higher-power mode to
alower-power mode, or vice versa. In some embodiments, the
lower-power mode comprises any operating mode in which
less electrical power and/or computational power is con-
sumed by a processor core than in the higher-power mode.
For example, the lower-power mode may be an idle mode, in
which some or all of a set of processing circuits in the pro-
cessor core (e.g., one or more computational pipelines in the
processor core, one or more hardware thread contexts in the
processor core, etc.) are halted or operating at a reduced rate.
As another example, the lower-power mode may be a sleep or
powered-down mode where an operating voltage for some or
all of the processor core is reduced and/or control signals
(e.g., clocks, strobes, precharge signals, etc.) for some or all
of the processor core are slowed or stopped. Note that, in
some embodiments, at least a portion of the processor core
continues to operate in the lower-power mode. For example,
in some embodiments, the processor core remains sufficiently
operable to send and receive signals for communicating
between processor cores and for performing other operations.

In some embodiments, the higher-power mode comprises
any operating mode in which more electrical power and/or
computational power is consumed by the processor core than
in the lower-power mode. For example, the higher-power
mode may be an active mode, in which some or all of a set of
processing circuits in the processor core (e.g., a computa-
tional pipeline, a processor core, a hardware thread context,
etc.) are operating at a typical/normal rate. As another
example, the higher-power mode may be an awake/normal
mode in which an operating voltage for some or all of the
processor core is set to a typical/normal voltage and/or con-
trol signals (e.g., clocks, strobes, precharge signals, etc.) for
some or all of the processor core are operating at typical/
normal rates.

40

45

55

8

Monitoring a Memory Location

In some embodiments, a first processor core and a second
processor core are configured to execute program code that is
part of an application, firmware, and/or an operating system
for each processor core to enable the first processor core to
monitor a memory location on behalf of the second processor
core. For example, the memory location may hold a flag that
is monitored by the first processor core on behalf of the
second processor core. In these embodiments, when a given
condition is met, the first processor core modifies a value in
the memory location. For example, when a value in another
memory location exceeds a threshold (the condition), the first
processor can update the flag in the memory location.
Because the first processor core is monitoring the memory
location, the modification of the memory location causes the
first processor core to send a signal to the second processor
core to cause the second processor core to perform a corre-
sponding action. Some embodiments that perform these
operations are described in the following paragraphs.

In some embodiments, the second processor core (i.e., the
processor core that is to receive the notification when the
memory location meets the condition) is a processor core that
is configured to perform a task on a batch or set of data. For
example, in some embodiments, the second processor core is
a CPU or GPU processor core that is configured to perform
multiple parallel tasks simultaneously (e.g., pixel processing
or simultaneous instruction, multiple data operations). In
these embodiments, the first processor core (i.e., the proces-
sor core that is to monitor the memory location) is a sched-
uling processor core/mechanism that is configured to keep
track of available data and to cause the second processor core
to perform the parallel tasks when a sufficient batch or set of
data is available to use a designated amount of the parallel
processing power of the second processor core. In these
embodiments, the first processor core can keep track of an
amount of data in a task queue (e.g., a tail pointer that indi-
cates the “end” of the task queue) to determine when an
amount of data in the task queue is sufficient to cause the
second processor core to begin processing a set of tasks in
parallel. For example, in embodiments where the task is pixel
processing, the first processor can determine when sufficient
pixels are available in the task queue for processing by the
second processor core.

In some embodiments, to enable the first processor core to
keep track of the data in the task queue, the second processor
core communicates to the first processor core: (1) a pointer to
(or other indicator of) the end of the task queue; (2) a thresh-
old amount of data to be available in the task queue before the
second processor core is to begin performing the tasks; and
(3) a flag. For example, in some embodiments, the second
processor core generates and stores a data struct/struct to a
memory with the flag, the pointer, and the threshold to a
memory, from where the first processor core acquires the
struct. The second processor core then executes a MONITOR
instruction on the memory location where the flag is stored
that causes the first processor core to begin monitoring the
memory location where the flag is stored. The second proces-
sor core next executes an MWAIT instruction that causes the
second processor core to transition to a lower-power mode.
(The MONITOR and MWAIT instructions are known in the
art and hence will not be described further.)

Upon receiving one or more signals indicating that the
MONITOR instruction for the memory location where the
flag is stored and the MWAIT instruction were executed by
the second processor core, the first processor core begins to
monitor the memory location where the flag is stored. In order
to enable monitoring the memory location, the first processor

US 9,256,535 B2

9

core loads a copy of the memory location where the flag is
stored to a first cache line in a local cache (e.g., to an L1
cache) and begins to monitor the first cache line for changes.
The first processor core also loads the pointer to the tail of the
task queue and the threshold value received from the second
processor core to a second cache line in the local cache. The
pointer and the threshold value are then used by the first
processor core to determine when an amount of data in the
task queue is sufficient to cause the second processor core to
begin processing the tasks in the task queue.

Note that the pointer and threshold value and the flag are
loaded to separate/different cache lines in the local cache by
the first processor core; this enables the first processor core to
monitor the cache line with the copy of the flag memory
location for changes (as requested by the earlier-executed
MONITOR instruction) without also detecting changes in the
task queue via the pointer (which would occur if the pointer
and the flag were stored in the same cache line). In some
embodiments, the above-described struct generated by the
second processor core is configured so that, when the struct is
loaded into the local cache, the pointer and threshold value
and the flag are stored in different cache lines. For example, in
some embodiments, the struct includes padding data that
separates the flag from the pointer and the threshold value.

In addition to monitoring the first cache line (where the
copy of the memory location for the flag) is stored, the first
processor core begins to keep track of the amount of data in
the task queue to determine when the amount of data is greater
than or equal to the threshold value. For example, each time
that data is added to the task queue, the first processor core can
check the pointer to the end of the task queue to determine if
the amount of data is equal to or exceeds the threshold. When
the amount of data is equal to or exceeds the threshold, the
first processor core updates the flag in the first cache line. As
described above, the first processor core is monitoring the
first cache line to determine when the flag is updated based on
the earlier-executed MONITOR instruction. Thus, upon mak-
ing the update to the flag in the first cache line, the first
processor core detects the update and causes the second pro-
cessor core to perform an operation by sending a wake-up
signal to the second processor core. The wake-up signal
causes the second processor core to transition to a higher-
power mode in which the tasks in the task queue are pro-
cessed.

FIG. 3 presents pseudocode illustrating a series of opera-
tions performed by a first processor core and a second pro-
cessor core for monitoring data in a task queue in accordance
with some embodiments. For the embodiment shown in FIG.
3, the operations are similar to operations that may be per-
formed for the above-described task-performing processor
core and scheduling processor core/mechanism (which are
described as a second processor core and a first processor
core, respectively, for FIG. 3). However, the operations
shown in FIG. 3 are presented as a general example of func-
tions performed by some embodiments. The operations per-
formed by other embodiments include different operations
and/or operations that are performed in a different order. In
addition, although certain mechanisms in computing device
100 are used in describing the operations in FIG. 3, in some
embodiments, other mechanisms can perform the operations.

As can be seen in FIG. 3, the pseudocode includes a set of
global declarations that comprise a declaration of a trigger
struct and an mwaitc function. The trigger struct includes a
wakeup flag, a padding value, a pointer to a memory location,
and a threshold value for which the memory location is to be
monitored. The padding value is configured to cause the flag
to be stored on a first cache line and the pointer and the

10

30

40

45

50

10

threshold value to be separately stored on a second cache line
so that the cache line with the flag can be monitored as
described herein. The mwaitc function includes a MONITOR
instruction for the wakeup flag in a trig struct (t.wakeup_flag)
that causes the first processor core to monitor the memory
location where the flag is stored (as described below) and an
MWAIT instruction that causes the second processor core to
enter a lower-power mode. The MONITOR and MWAIT
instructions are known in the art and hence are not described
in detail.

During operation, the second processor core instantiates a
trigger struct “trig” and an int variable threshold that is set
equal to MIN_SCHED_GRAN, or “minimum scheduling
granularity,” which is equal to an amount of data in the task
queue that is sufficient to cause the second processor core to
begin processing the tasks in the task queue. The second
processor core then sets the memory location pointer in the
trig struct (trig.memory_location_ptr) to the tail pointer of the
task queue (tail_ptr), sets the threshold value in the trig struct
(trig.theshold_value) equal to the threshold variable, and sets/
initializes the wakeup flag (trig.wakeup_flag) to zero. The
second processor core next executes the mwaitc function,
which means executing the MONITOR instruction with the
wakeup flag (trig.wakeup_flag) as the argument. Executing
this instruction sends a signal to the first processor core that
causes the first processor core to begin monitoring the
memory location where the wakeup flag is stored (or, more
specifically, a copy of the memory location loaded to a first
cache line in a local cache in the first processor core). Next,
the second processor core executes the MWAIT instruction,
which causes the second processor core to transition to a
lower-power mode.

After the mwaitc function is executed by the second pro-
cessor core and the corresponding signals caused by execut-
ing the MONITOR and MWAIT instructions are received in
the first processor core, as part of subsequent operations, the
first processor core or another entity in computing device 100
updates the task queue by adding data to the task queue.
Based on the update of the task queue, the first processor core
performs a corresponding update to the tail pointer (tail_ptr)
of the task queue by adding, to the tail pointer and via the
pointer to the memory location (trig.memory_location_ptr),
an update value (update_value) that is proportional to the
amount of data added to the task queue. As part of the opera-
tion of updating the tail pointer, the first processor core uses a
compare and swap (CAS) instruction to perform the update
(the new_val, cur_val, and old_val variables are used for the
CAS instruction as shown). As is known in the art, the CAS
instruction compares an existing/present value of the memory
location (which is the tail pointer of the task queue, as pointed
to by trig.memory_location_ptr) to the cur_val input and
overwrites the memory location with the new_val when they
match. CAS also returns the existing value (to which old_val
is set in the example in FIG. 3).

Next, the first processor core uses the old_val, the new_val,
the cur_val, and trig.threshold_value to determine if an
amount of data in the task queue is sufficient to wake up the
second processor core to begin processing the data in the task
queue. While making the determination, the first processor
core first compares old_val to cur_val to ensure that the CAS
completed as expected (e.g., that there was no conflicting
write to the memory location pointed to by trig.memory_lo-
cation_ptr—which is the tail pointer of the task queue—
during the update of the tail pointer). If the CAS completed as
expected, the first processor core compares new_val (which
represents the updated amount of data in the task queue) to the
threshold value (trig.threshold_value). If new_val is greater

US 9,256,535 B2

11

than or equal to the threshold, the amount of data in the queue
is sufficient to cause the second processor core to begin pro-
cessing the data in the task queue. In this case, the first
processor core sets the wakeup flag (trig.wakeup_flag) to 1,
thereby changing the value in a cache line that is being moni-
tored by the first processor core responsive to the MONITOR
instruction earlier-executed by the second processor core.
Although not shown in FIG. 3, because the monitored cache
line, which contains the wakeup flag, has changed, the first
processor core sends a wakeup signal to the second processor
core that causes the second processor core to transition from
the lower-power mode to the higher-power mode.

Although an example is presented where the first and sec-
ond processor cores are a scheduling mechanism and a task
processor, some or all of the operations performed by these
embodiments may be performed by other embodiments to
achieve different outcomes and/or by different types of pro-
cessor cores. Generally, the described embodiments may use
any set of instructions, arrangement of data structure(s), etc.
for communicating a condition under which a memory loca-
tion is to be updated, so that a signal is communicated
between the first processor core and the second processor
core to cause the second processor core to perform an opera-
tion.

Entities for Performing the Operations

Although embodiments are described using processor
cores (or portions thereof) as examples, in some embodi-
ments, different entities can perform some or all of the opera-
tions herein described. For example, in some embodiments, a
first and second thread executing on a single processor core
can perform the operations herein described. In this example,
the first thread communicates the indication of the memory
location (e.g., a pointer to the memory location, an address of
the memory location, etc.), the threshold value, and the flag.
The second thread then uses the indication of the memory
location, the threshold value, and the flag to interact with the
first thread as herein described.

Process for Monitoring a Memory Location

FIG. 4 presents a flowchart illustrating a process for using
a flag in memory to enable a first processor core to signal a
second processor core when a condition is met in accordance
with some embodiments. Note that the operations shown in
FIG. 4 are presented as a general example of functions per-
formed by some embodiments. The operations performed by
other embodiments include different operations and/or opera-
tions that are performed in a different order. In addition,
although certain mechanisms in computing device 100 are
used in describing the operations in FIG. 4, in some embodi-
ments, other mechanisms can perform the operations. For
example, in some embodiments, the some or all of the opera-
tions can be performed by one or more hardware thread
contexts, monitoring mechanisms, scheduling mechanisms,
etc.

The process shown in FIG. 4 starts when a second proces-
sor core stores a flag, an indication of a memory location (e.g.,
a pointer to the memory location, an address of the memory
location, etc.), and a threshold value to a memory that is
accessible by a first processor core. For example, in some
embodiments, the second processor core generates a data
structure (or “‘struct”) that includes the flag, the indication of
the memory location, and the threshold value, and stores the
struct in the memory.

The first processor core then receives, from the second
processor core, an indication the flag is to be monitored (step
400). In some embodiments, the first processor core receives
an indication that the second processor core executed a
MONITOR instruction for the flag (i.e., an instruction that

10

15

20

25

30

35

40

45

50

55

60

65

12

causes the first processor core to monitor a memory location
occupied by the flag) and an MWAIT instruction. Recall that
the MONITOR and MWAIT instructions are known in the art
and hence are not described in detail.

The first processor core then stores copies of the flag, the
indication of the memory location, and the threshold value to
a cache in the first processor core (e.g., .1 cache 116). More
specifically, the first processor core stores the flag in a first
cache line and separately stores the indication of the memory
location and the threshold value in a second cache line (step
402). In these embodiments, because the first processor moni-
tors the flag in response to the MONITOR instruction, if the
flag and the indication of the memory location were to be
stored on the same cache line, each time that the memory
location was updated (and hence the cache line in which both
the flag and the memory location were stored), the first pro-
cessor core would detect the update to the cache line as an
update to the flag. To enable cache-line-level monitoring of
the flag, these embodiments store the indication of the
memory location and the flag in separate cache lines as
described. In some embodiments, the second processor core
adds padding data to the above-described struct that causes
the first processor core to automatically store the flag and the
indication of the memory location on separate cache lines.

The first processor core then commences monitoring the
flag in the first cache line in the cache (step 404). For example,
in some embodiments, a monitoring mechanism such as
monitoring mechanism 202 in the cache is configured by the
first processor core to monitor the first cache line.

In addition to monitoring the flag in the first cache line, the
first processor core keeps track of a value in the indicated
memory location (step 406). Upon detecting that a value in
the indicated memory location has changed, the first proces-
sor core evaluates a condition for the memory location (step
408). To evaluate the condition, in some embodiments, the
first processor core determines if the value in the memory
location has a corresponding relationship to the threshold
value provided by the second processor core. In these
embodiments, the first processor core can perform one or
more mathematical (addition, multiplication, etc.), bitwise
(shift, rotate, mask, etc.), combinatorial (AND, XOR, etc.),
comparison (less than, greater than, equal to, not equal to,
etc.) and/or complex logical operations on the threshold value
and/or the value in the indicated memory location to arrive at
a result that indicates if the value in the indicated memory
location has the predetermined relationship with the thresh-
old value. For instance, the first processor core can determine
if the value in the indicated memory location is greater than,
less than, equal to, not equal to, etc. the threshold value (or
some second value computed from the threshold value).

If the condition is not met (step 410), the first processor
core returns to step 406 to continue to keep track of a value in
the indicated memory location (and continues monitoring the
flag). Otherwise, if the condition is met (step 410), the first
processor core updates the flag in the first cache line (step
412). Recall that the first processor core (e.g., the monitoring
mechanism 202 in the cache) is monitoring the flag in the first
cache line based on the request received from the second
processor core in step 400. Thus, upon updating the flag in the
first cache line, the first processor detects the update of the
flag (step 414) and sends a signal to the second processor core
to cause the second processor core to perform an operation
(step 416). For example, the first processor core may send a
wakeup signal that causes the second processor core to tran-
sition from a lower-power mode to a higher-power mode.

The foregoing descriptions of embodiments have been pre-
sented only for purposes of illustration and description. They

US 9,256,535 B2

13

are not intended to be exhaustive or to limit the embodiments
to the forms disclosed. Accordingly, many modifications and
variations will be apparent to practitioners skilled in the art.
Additionally, the above disclosure is not intended to limit the
embodiments. The scope of the embodiments is defined by
the appended claims.

What is claimed is:

1. A method for operating a computing device, comprising:

in a first processor core, performing operations for:

receiving, from a second processor core, an indication of
amemory location, a threshold value to be used when
evaluating a condition for the memory location, and a
flag;

storing the flag in a first cache line in a cache in the first
processor core;

storing the indication of the memory location and the
threshold value in a second cache line in the cache, the
second cache line being separate from the first cache
line;

upon encountering a predetermined result when evalu-
ating the condition for the indicated memory location,
updating the flag in the first cache line; and

based on the update of the flag, causing the second
processor core to perform an operation.

2. The method of claim 1, wherein receiving the indication
of'the memory location and the flag from the second proces-
SOr core comprises:

receiving a data structure from the second processor core

that comprises the indication of the memory location
and the flag, wherein the data structure is configured so
that, when the indication of the memory location and the
flag are stored in the cache in the first processor core, the
flag is stored in the first cache line and the indication of
the memory location is separately stored in the second
cache line.

3. The method of claim 1, wherein the condition comprises:

a conditional test to determine if a value in the indicated

memory location has a corresponding relationship to the
threshold value.

4. The method of claim 3, wherein the relationship of the
value in the indicated memory location to the threshold value
comprises at least one of:

greater than;

less than;

equal to; and

not equal to.

5. The method of claim 1, wherein the method further
comprises:

detecting that a value in the indicated memory location has

been changed;

evaluating the condition for the indicated memory loca-

tion; and

upon encountering the predetermined result of the evalua-

tion of the condition, updating the flag in the first cache
line.

6. The method of claim 1, wherein causing the second
processor core to perform the operation comprises:

causing the second processor core to transition from a first

power mode to a second power mode.

7. The method of claim 6, wherein the first power mode is
a lower-power mode and the second power mode is a higher-
power mode.

8. The method of claim 6, wherein the first power mode is
a higher-power mode and the second power mode is a lower-
power mode.

9. The method of claim 6, wherein the method further
comprises:

15

20

25

30

35

40

50

55

60

65

14

receiving a first indication that a MONITOR instruction
was executed in the second processor core, the first
indication causing the first processor core to keep track
of the indicated memory location to determine if the
memory location meets the condition and to monitor the
flag; and
receiving a second indication that an MWAIT instruction
was executed in the second processor core, the second
indication causing the first processor core to cause the
second processor core to transition from the first power
mode to the second power mode upon updating the flag.
10. An apparatus, comprising:
a first processor core;
a cache coupled to the first processor core;
wherein the first processor core is configured to:
receive, from a second processor core, a indication of a
memory location, a threshold value to be used when
evaluating a condition for the memory location, and a
flag;

store the flag in a first cache line in the cache;

store the indication of the memory location and the
threshold value in a second cache line in the cache, the
second cache line being separate from the first cache
line;

upon encountering a predetermined result when evalu-
ating the condition for the indicated memory location,
update the flag in the first cache line; and

based on the update of the flag, cause the second proces-
sor core to perform an operation.

11. The apparatus of claim 10, wherein, when receiving the
indication of the memory location and the flag, the first pro-
cessor core is configured to:

receive a data structure from the second processor core that
comprises the indication of the memory location and the
flag, wherein the data structure is configured so that,
when the indication of the memory location and the flag
are stored in the cache in the first processor core, the flag
is stored in the first cache line and the indication of the
memory location is separately stored in the second cache
line.

12. The apparatus of claim 10, wherein the condition com-

prises:

a conditional test to determine if a value in the indicated
memory location has a corresponding relationship to the
threshold value.

13. The apparatus of claim 12, wherein the relationship of
the value in the indicated memory location to the threshold
value comprises at least one of:

greater than;

less than;

equal to; and

not equal to.

14. The apparatus of claim 10, wherein the first processor
core is configured to:

detect that a value in the indicated memory location has
been changed;

evaluate the condition for the indicated memory location;
and

upon encountering the predetermined result of the evalua-
tion of the condition, update the flag in the first cache
line.

15. The apparatus of claim 10, wherein, when causing the

second processor core to perform the operation, the first pro-
cessor core is configured to:

US 9,256,535 B2

15

cause the second processor core to transition from a first
power mode to a second power mode.

16. The apparatus of claim 15, wherein the first power
mode is a lower-power mode and the second power mode is a
higher-power mode.

17. The apparatus of claim 15, wherein the first power
mode is a higher-power mode and the second power mode is
a lower-power mode.

18. The apparatus of claim 15, wherein the first processor
core is configured to:

receive a first indication that a MONITOR instruction was
executed in the second processor core, the first indica-
tion causing the first processor core to keep track of the
indicated memory location to determine if the memory
location meets the condition and to monitor the flag; and

receive a second indication that an MWAIT instruction was
executed in the second processor core, the second indi-
cation causing the first processor core to cause the sec-
ond processor core to transition from the first power
mode to the second power mode upon updating the flag.

15

20

16
19. A computing device, comprising:
a first processor core;
a second processor core coupled to the first processor core;
a main memory coupled to the first processor core and the
second processor core; and
a cache coupled to the first processor core;
wherein the first processor core is configured to:
receive, from the second processor core, a indication of
a memory location, a threshold value to be used when
evaluating a condition for the memory location, and a
flag;
store the flag in a first cache line in the cache;
store the indication of the memory location and the
threshold value in a second cache line in the cache, the
second cache line being separate from the first cache
line;
upon encountering a predetermined result when evalu-
ating the condition for the indicated memory location,
update the flag in the first cache line; and
based on the update of the flag, cause the second proces-
sor core to perform an operation.

#* #* #* #* #*

